organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xue-Mei Li, Shan-Shan Gu and Shu-Sheng Zhang*

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.052 wR factor = 0.156 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,4-Bis(3-hydroxymethylphenoxy)butane

The molecule of the title compound, $C_{18}H_{22}O_4$, has a center of symmetry. Molecules are linked into a zigzag chain *via* an O-H···O hydrogen bond. The chains are further linked by O-H···O and C-H··· π interactions to form a layer.

Comment

We have recently reported the structure of 1,6-bis(3-hydroxymethylphenoxy)hexane, (II) (Li *et al.*, 2006). In our ongoing studies of diethers, the title compound, (I), was synthesized and its crystal structure was determined.

The title molecule has a center of symmetryat the mid-point of the central C–C bond. All bond lengths and angles in (I) (Table 1) show normal ranges (Allen *et al.*, 1987), and are comparable to those in (II). In the crystal structure, molecules are linked into a zigzag chain along the [201] direction by a weak O–H···O hydrogen bond (Fig. 2 and Table 2). The chains are further linked by O–H···O and C–H··· π interactions (Table 2), forming a layer parallel to the (201) plane.

Experimental

To a solution of 3-hydroxymethylphenol (1.5 g, 12 mmol) in EtOH (90 ml) was added 10 mol I^{-1} NaOH (1.2 ml, 12 mmol), followed by 1,4-dibromobutane (1.3 g, 6 mmol). The reaction was refluxed for 23 h, cooled to room temperature and diluted with water (30 ml). The brown mixture was subsequently extracted with CH₂Cl₂, and the combined extracts were dried (MgSO₄) and concentrated *in vacuo* to give an off-white solid. Purification by flash chromatography (CH₂Cl₂/Me₂CO 4:1, ν/ν) gave the title compound as a slightly pink solid. Yellow single crystals were obtained by slow evaporation of an ethyl acetate–ethanol (3:1 ν/ν) solution at room temperature over a period of two weeks.

Crystal data

$C_{18}H_{22}O_4$	$D_x = 1.253 \text{ Mg m}^{-3}$
$M_r = 302.36$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 1160
a = 13.920 (3) Å	reflections
b = 4.8454 (9) Å	$\theta = 3.2-23.7^{\circ}$
c = 12.846 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 112.347 \ (3)^{\circ}$	T = 293 (2) K
V = 801.4 (3) Å ³	Plate, yellow
Z = 2	$0.36 \times 0.16 \times 0.06 \text{ mm}$

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 9 January 2006 Accepted 13 January 2006

Online 20 January 2006

Figure 1

The structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. The suffix A corresponds to symmetry code (1 - x, 2 - y, 2 - z).

reflections

Data collection

Siemens SMART 1000 CCD area-	1557 independent reflections
detector diffractometer	1186 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.020$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -17 \rightarrow 15$
$T_{\min} = 0.969, T_{\max} = 0.995$	$k = -5 \rightarrow 5$
4195 measured reflections	$l = -15 \rightarrow 13$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0758P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.053$	+ 0.191P]
$wR(F^2) = 0.156$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
1557 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
100 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected bond lengths (Å).

O1-C1	1.405 (2)	O2-C8	1.437 (2)
O2-C6	1.367 (3)	C8-C9	1.497 (3)

Table 2

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2-C7 benzene ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots O1^i$	0.82	1.95	2.765 (2)	173
$C1-H1C\cdots Cg1^{ii}$	0.97	2.76	3.685	160

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) x, y - 1, z.

All H atoms were located in a difference Fourier map and constrained to ride on their parent atoms, with O-H = 0.82 Å and C-H = 0.93-0.97 Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$ and $1.2U_{eq}(C)$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Project of Educational Administration of Shandong Province (No. J04B12) and the Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (No. 2005BS04007).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Li, X.-M., Gu, S.-S. & Zhang, S.-S. (2006). Acta Cryst. E62, 0487-0488.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.